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Exact solution of the Milburn equation for the two-photon
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Abstract. An exact solution of the Milburn equation is given for the two-photon Jaynes-
Cummings model of atom—field interaction with non-triviat dynamics. It is shown that the
intrinsic decoherence in the atom-field interaction is responsible for the deterioration of the
revivals of the atomic inversion.

Recently there has been considerable interest in understanding some fundamental problems
in quantum mechanics [1-12]. ¥t is well known that the feature of quantum mechanics
that most distinguishes it from classical mechanics is the coherent superposition of distinct
physical states. This is the basis for the concern about the quantum measurement [I,2).
However, the superposition principle does not operate on a macroscopic scale, although
nothing in the present formulation of quantum mechanics would indicate this.

Why does quantum coherence vanish on the macroscopic level? There are several
approaches to solve the deccherence problem [4-11]. One of them is to modify the
Schrodinger equation in such a way that coherence is automatically destroyed as the
physical properties of the quantum system approach a macroscopic level. This intrinsic
decoherence approach has recently been studied by several authors [7-11]. In particular,
Milburn [11] has proposed a simple modification of standard quantum mechanics based
on an assumption that on sufficiently short time steps the system evolves under unitary
evolution in a stochastic sequence of identical unitary transformations. This assumption
leads to a modified Schrodinger equation, called the Milburn equation, which contains a
term responsible for the decay of quantum coherence.

Generally speaking, it is difficult to find an exact solutiorn of the Milburn equation
for a quantum system, In [11], Milburn considered only the evolution of a given free
guantum system. Moya-Cessa et al [12] gave a form solution of the Milburn equation and
studied the intrinsic decoherence in the atom—field interaction for the one-photon Jaynes—
Cummings model (JcM). Recently, much attention has been paid to the quantum properties
of multiphoton processes and the multiphoton laser both theoretically and experimentally
f13-16]. It is noted that the guantum dynamics of the two-photon JCM is qualitatively
different from that for the usual single-mode JCM. In this letter, we consider the two-photon
icM which is important in quantum optics. We will give an exact solution of the Milburn
equation for the two-photon JCM and express explicitly the solution in the two-dimensional
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atomic basis. We will also study the influences of the infrinsic decoherence on the atomic
inversion in the JCM.

Consider a quanm system described by the density operator G(f). Under the
assumption that on sufficiently short time steps the system does not evolve continuously
under evolution but rather in a stochastic sequence of identical unitary transformations, the
density operator satisfies the equation [11]

d . i~ 1 R
Ep(f) = J’{CXP [—F!—J;H:]Pff) exp [EH] - P(f)} (1

where H is the Hamiltonian of the system, ¥ is a parameter which is equal to the mean
frequency of the unitary step. In the limit ¥ — oo, equation (1) reduces to the ordinary
von Neumann equation for the density operator.

Expanding equation (1) to first order in ¥~!, one can obtain the Milburn equation

d . i~ | P
—pt)=—= ] — .7 ] 1 '
dtp() 5 LH A] 2h2y[H [H,5]] 2}
The Hamiltonian for the two-photon JCM in the rotating-wave approximation {15] is
given by

H =twata + %hwocrg + ilosa? + atlo ) 3)

where a and a™ are field annihilation and creation operators and  and @, are the frequencies
of the field mode and atomic transition, respectively. In this letter we take exact resonance
between the field and atomic transition frequencies, i.e. @, = 2w, 03 and ¢y are the Pauli
spin mattices, A is the real coupling constant. For the sake of simplicity, in the Hamiltonian
(3) we ignore the term which describes the intensity-dependent Stark shift of two-levels
arising due to the ransition to an intermediate level.

We now start to find the exact solution for the density operator 5(t) of the Milburn
equation (2) applied to the Hamiltonian (3). we first introduce three auxiliary operators R,
S and T defined by

. o0 T Xk 1 . "
expRe)pe) = 3. () gtsn* @
k= WY :
exp(51)5(t) = exp(—iHT)p() exp(iHT) (5)
f o3 = exn {57 ) 3 T |
exp(TT)p(t) = exp ( 2y H )p(t) exp ( 3y H ) (6}
which lead to
A, 1 oa, A oA ~ |
Rp==~Hp Sp = —ilH, p] Th= —2—{H2. A} Q!
Y 14

From equations (2) and (7), we can write the formal solution of the Milburn equation
as
(1) = exp(Re) exp(St) exp(T1)5(0) ®
where p(0) is the density operator of the initial atom-field system. We assume that injtially
the field is prepared in coherent states |z}:

)= exp —%lzlz)%ln) =Y Ouln) ©)

r=0 n=0
and the atom was prepared in its excited states e}, so that

A0) = |zHz| @ ledfe] . (10)
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In a two-dimensional atomic basis the Hamiltonian (3) and its square can be expressed
as a sum of diagonal and off-diagonal terms, respectively,

H=H,+ H; [Ho, H1=0  HA*=A+8 (4, B]1=0 (11)
with
o (Aa+10 5o 0 a4
Ho_w( 0 ﬁ_l) H,_A(a+2 0) (12)
5 Bisr O - 0 (i — 1)
=% a) B=(-Shen “ 3

where B, = @2i? + A%A(A + 1), and we have assumed exact resonance between the field
and atomic transition frequencies.
Let

pa(t) = exp(8t) exp(T 1) 5(0) . (14)
From the definition of the anxiliary operators and the initial condition (10), we can find that

o - 1 .
oa(f) = exp(St)exp (—% H zt) p(0)exp (——z—y-H 2:)

~ t ~\. T A ~
= exp(—iH;t)exp| —— B | hi(t)exp | —— B | exp(iH;¢) (15)
2y 2y
where
- toa »
A1(8) = W (EONV O] ® le){el |W(z) = exp (—E;ﬁm)lze @ (16)
we can write the operator exp(—(¢ /2y)1§) in the form
A Ry -2l
exp _LB _ AB . (ﬂ""”ﬂ (17)
2y LWL T ('
JE=1A me
where
~ At pras - B At ——
%.(6) = cosh (—y“’— Bo+ 1)) #.() = sinh (%«/:ﬁ(ﬂ + 1)) . (18)
Similarly, one can express the operator exp(~if};t) in the two-dimensional atomic basis
as
. Gty  —ia?Sml
exp(—ifit) = V@i (19)

—i $ena ) a+? éu-—-—l )

(i~1%
where the operators C,(t) and §,(t) are defined as
Cu(t) = cos(Atv/Alh + 1)) Sp(t) = sin(u AR+ 1)) . (20)
Combining expressions (17) and (19), we find that

- Vays (1) 2

Wn-{:l 3] TatDE1D (21)
Yn 1(? Wn-—-l(t)

:?(u+l)(n+3)

L5 L
exp(—iHrt)exp (—53) = o+
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where the operators V, and W, are defined by

V,=~C,¥, —i5,%, W, =C, X, +15,7,. (22)
Substituting (21} into (15), we can obtain an explicit expression for the operator py (1)
as follows:
: LTONR 20! )
f) = a ~ 23
0 ( () ¥l @
where we have used the following operator:
By () = W01 G i=1,2) (24)
with
. Vot
[ ()} = Wara (D19 (D)) |Wa(r)) = a™? +10) (W) . (25)

(A+ 1A+ 2)

Taking into account the definition of the auxiliary operator R, we can write the action
of the operator exp(Rt) on the operator (1)

o0 k
=Y. ( ’) ; B o) H (26)
k=0

This is the exact solution of the Milburn equation (2} with the two-photon Jaynes—
Cummings Hamiltonian (3) and the initial condition (10). In practical use, one wishes to
express explicitly the density operator in terms of its matrix elements, so that in what follows
we evaluate the matrix elements of the density matrix in the two-dimensional atomic basis.

Since H, commutes with H;, from (11) we have

k
=% ( f; )ﬁ;‘-'"ﬁ;" . w1}
m=0

It can be proved that when m is an even number, the off-diagonal term of the operator
H* - H”’ vanishes, and we have

EN rbem it 1 + @ 0
Hf-mpgm . _ n+1 n+1 "
2 ()i s (5w le,) o

meeven ¢n+ 1

while when # is an odd number, the diagonal term of ﬁf“”" f;’}" vanishes, and we have

2 )
0 'Z'PR —ha
> ENgemgn ~2f “ D (29)
e ! 2 W;tl-‘#::l a+2 0

m
dd
mee 1)

where the 0perators ¢, , and ¢%_, are defined by

= [wh + AR + DI ¢ = [wh — ARG + DIF. (30)

From (27), (28) and (29) it follows that
2 (k) 2 &%
ﬁ'k _ f e a ?ﬁ(ﬁ—-l) (31)
i +2 2(k)
:Eﬁ(ﬁ—na Fami

F® = L@k +dh) 5% =L@ - b, (32)

with
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Making use of (23) and (31) we can cbtain

n (k} A (£}
t
By Al
where the matrix elements are given by
AR @0 = 88,0 P +a28% 0 0 FY, + £ 40P,
+a28® (5 ¥ a2 (34)
n‘zg;’ ()= §flk_)lﬂ+2‘1’11(f)azg,(,k_) + f(f) 0y, (f)azg,(lk)] 4 é,(,k)la“‘i'lz(f)ﬁf),
+ 78 9 (35)
AR = fP 0% +a g,‘,")l%l(r)a"‘gﬁ"_’ FE 90 %,
+a*8% i (r) F (36)
AP @) = 2% a8 (0 FO, + f"" Pa @) 8, + 0 a8 at
+ 78 By (08 o (37)
with
2 = g0 (A + )2, (38)

From (26) and (33) we finally arrive at the explicit expression of the solution of the
Milburn equation (2) for the two-photon JCM:

Lals) s Eal;) e

pory=1 '3 m" : 39)
Ea(5) o A0
k=0 k=0

It is well known that in the JCM the quantum coherences which are buiit up during the
interaction with the atom significantly affect the dynamics of the atom [17]. It is because
of these coherences that one can observe collapses and revivals of the atomic inversion
[18]. The intrinsic decoherence will suppress the revivals. To see this, we evaluate explicit
expression for the time evolution of the atomic inversion defined by

W(t) = Tr[5()as]. (40)
With the help of the expression P:'a;; = 63(I-:fo - I;';), we rewrite (40} as

W) = Tr{ exp [%mg — ﬁ})] 52(:)«3} : (41)

It is easy to get that

t .
P ) exp (--9,,+1) 0
exp [;(Hg - H})] = L4 (42)

t .
0 ex (-—9,,_1)
P Y

8, =i - AHiE+ 1), (43)

with
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Substitution of (22} and (41) into (41) vields that
[=.=]

Wty =y [<n| exp (y9"+l) &y (1)ln) — (nlexp (%én_,)\ilzz(r)m)] . (44)

n=0

It is straightforward to evalutate the two terms on the LHS in (44), their results are,
respectively,

{n|exp (%éﬁl)@n(z)m)
[Q,,|2{ cos? [t/ (n + 1)(n + 2)] cosh® [ V(n+ 13(n +2)]
—sin’ [A/(n + 1)(n + 2)] sinh? [ . Lo+ D + 2)“

2.2

% exp [ A D +2)] (45)
{n|exp (%én—l ) B (6)In)
|Q,,|2[ sin® [Aty/(n + 1)(n + 2)] cosh? [ !+ +2)]

+cosz[ht\/(n+1)(n+2)[smh2[ > 22 S )3(n+2)”

2220

X exp [ e nin — 1)} . (46)

Substituting (45) and (46) into (44), we finally arrive at the result

o] 2
W) = |0.exp [ - %(n + Din+ 2):| cos[2aty/(n + 1}{n +2) ] A7)
r=0

where the probablity amplitudes Q, are given by (9). We see that (47) in the limit y — o¢
reduce to the well known expression {15] for the atomic inversion in the two-photon ICM
governed by the von Neumann equation,

The solution (47) indicates that in the evolution the additional term in the Milburn
equation, which destroys quantum coherences, leads to the appearance of decay factors
exp[—(2A%t/y)(n + 1)(n + 2)] in (47), which are responsible for the destruction of revivals
of the atomic inversion. With the decrease of the parameter y, i.e. with a more rapid
decoherence, we can observe rapid deterioration of revivals of atomic inversion.

It is interesting to study further the influence of the intrinsic decoherence on other
non-classical effects of light field in the JCM.
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