
Exact solution of the Milburn equation for the two-photon Jaynes-Cummings model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 L633

(http://iopscience.iop.org/0305-4470/27/17/006)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J, Phys. A Math. Gen. 27 (1994) L633-L639. Printed in the UK 

LETTER TO THE EDITOR 

Exact solution of the Milburn equation for the two-photon 
Jaynes-Cummings model 
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t Theoretical Physics Division. Nankai Institute of Mathematics, Tianjin 300071, People's 
Republic of China 
t Department of Physics, Institute of Physics, Hunan N o d  University. Hunan 410006, 
People's Republic of China 

Received 22 April 1994. in final form 1 July 1994 

Abstract An exaci solution of lhe Milbum equation is given for the two-photon Jnynes- 
CuMnings model of atom-field interaction with non-tivial dynamics. It is shown that the 
intinsic decoherence in the atom-field interaction is responsible for the deterioration of the 
revivals of the atomic inversion. 

Recently there has been considerable interest in understanding some fundamental problems 
in quantum mechanics [1-12]. It is well known that the feature of quantum mechanics 
that most distinguishes it from classical mechanics is the coherent superposition of distinct 
physical states. This is the basis for the concern about the quantum measurement [ 1,2]. 
However, the superposition principle does not operate on a macroscopic scale, although 
nothing in the present formulation of quantum mechanics would indicate this. 

Why does quantum coherence vanish on the macroscopic level? There are several 
approaches to solve the decoherence problem [4-11]. One of them is to modify the 
Schriidinger equation in such a way that coherence is automatically destroyed as the 
physical properties of the quantum system approach a macroscopic level. This intrinsic 
decoherence approach has recently been studied by several authors [7-111. In particular, 
Milburn [ I l l  has proposed a simple modification of standard quantum mechanics based 
on an assumption that on sufficiently short time steps the system evolves under unitary 
evolution in a stochastic sequence of identical unitary bansformations. This assumption 
leads to a modified Schrodinger equation, called the Milburn equation, which contains a 
term responsible for the decay of quantum coherence. 

Generally speaking, it is difficult to find an exact solution of the Milburn equation 
for a quantum system. In [ll],  Milburn considered only the evolution of a given free 
quantum system. Moya-Cessa et al [12] gave a form solution of the Milburn equation and 
studied the intrinsic decoherence in the atom-field interaction for the one-photon Jaynes- 
Cummings model (JCM). Recently, much attention has been paid to the quantum properties 
of multiphoton processes and the multiphoton laser both theoretically and experimentally 
[13-161. It is noted that the quantum dynamics of the two-photon JCM is qualitatively 
different from that for the usual single-mode J C M .  In  this letter, we consider the two-photon 
JCM which is important in quantum optics. We will give an exact solution of the Milburn 
equation for the two-photon JCM and express explicitly the solution in the two-dimensional 
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atomic basis. We will also study the influences of the inwinsic decoherence on the atomic 
inversion in the JCM. 

Under the 
assumption that on sufficiently short time steps the system does not evolve continuously 
under evolution but rather in a stochastic sequence of identical unitary transformations, the 
density operator satisfies the equation [ I  11 

Consider a quantum system described by tha density operator g(t). 

where fi is the Hamiltonian of the system, y is a parameter which is equal to the mean 
frequency of the unitary step. In the limit y + 03, equation (1) reduces to the ordinary 
von Neumann equation for the density operator. 

Expanding equation (1) to first order in y - ' ,  one can obtain the Milburn equation 

The Hamiltonian for the two-photon JCM in the roiating-wave approximation 1151 is 
given by 

A = Awa+a + $w,,q + h(cr+az +a+*a-) (3) 
where a and a+ are field annihilation and creation operators and o and o,, are the frequencies 
of the field mode and atomic transition, respectively. In this letter we take exact resonance 
between the field and atomic transition frequencies, i.e. o, = 2w, 03 and U* are the Pauli 
spin matrices, h is the real coupling constant. For the sake of simplicity, in the Hamiltonian 
(3) we ignore the term which describes the intensity-dependent Stark shift of two-levels 
arising due to the transition to an intermediate level. 

We now start to find the exact solution for the density operator ;(r) of the Milburn 
equatio? (2) applied to the Hamiltonian (3). we first introduce three auxiliary operators 8,  
$ and T defined by 

which lead to 

(7) 
1 1 -  

Y 2Y 
From equations (2) and (7), we can write the formal solution of the Milburn equation 

ij = - H ~ H  Sg = -i[fi, 61 t g  = --{U*. 6 ) .  

as 

~ ( t )  = exp(it)exp($r)exp(~r)j(o) (8) 
where p(0) is the density operator of the initial atom-field system. We assume that initially 
the field is prepared in coherent states 12): 

and the atom was prepared in its excited states le), so that 
B(0) = I z ) k  8 144.  (10) 
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In a two-dimensional atomic basis the Hamiltonian (3) and its square can be expressed 
as a sum of diagonal and off-diagonal terms, respectively, 

f i = f i o + f i ,  [kO*fi,l=O f i Z = , ' i + E  [ i , E ] = O  (11) 

with 

where pn = w z i 2  + i 2 A ( i  + I), and we have assumed exact resonance between the field 
and atomic transition frequencies. 

Let 

6 2 ( t )  = exp(it)exp(ft)b(O). (14) 

From the definition of the auxiliary operators and the initial condition (lo), we can find that 

where 

where 

f,,(t) = sinh (18) 

Similarly, one can express the operator exp(-iZ&t) in the two-dimensional atomic basis 
as 

where the operators &(t)  and .$(t) are defined as 

&(t) = cos(htJ-) iAt)  = ". (20) 

Combining expressions (17) and (19), we find that 
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where the operators Pn and Wn are defined by 
^ I  ?,, = -&fn - iS,X, CF. = &2,, + i& f,, . (22) 

Substituting (21) into (15), we can obtain an explicit expression for the operator A(?) 
as follows: 

where we have used the following operator: 

%,(t)  = IY~(OW~(OI (i. j = 1,2) 
with 

Taking into account the definition of the auxiliary operator E ,  we can write the action 
of the operator exp(kt) on the operator &(t) 

m 

k !  

This is the exact solution of the Milbum equation (2) with the two-photon Jaynes- 
Cummings Hamiltonian (3) and the initial condition (10). In practical use, one wishes to 
express explicitly the density operator in terms of its matrix elements, so that in what follows 
we evaluate the matrix elemen! of the density matrix in the two-dimensional atomic basis. 

Since Go commutes with H,, from (11) we have 

It can be proved that when m is an even number, the off-diagonal term of the operator 
H;" vanishes, and we have 

while when m is an odd number, the diagonal term of I?:-'"$;" vanishes, and we have 

where the operators $ktl and are defined by 

6; = [ w i  + AJ-Ik 4: = [us - A m ] k .  (30) 
From (27), (28) and (29) i t  follows that 
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Making use of (23) and (31) we can obtain 

From (26) and (33) we finally anhe at the explicit expression of the solution of the 
Milburn equation (2) for the two-photon JCM: 

It is well known that in the JCM the quantum coherences which are built up during the 
interaction with the atom significantly affect the dynamics of the atom [17]. It is because 
of these coherences that one can observe collapses and revivals of the atomic inversion 
[18]. The intrinsic decoherence will suppress the revivals. To see this, we evaluate explicit 
expression for the time evolution of the atomic inversion defined by 

W ( t )  = Tr[j(t)u3]. (40) 

With the help of the expression i?u3 = u3(& - &), we rewrite (40) as 

It is easy to get that 

with 

8" = d A Z  - hZA(A t 1). 
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Substitution of (22) and (41) into (41) yields that 

It is straightforward to evalutate the two terms on the LHS in (44), their results are, 
respectively, 

= lQ,12( cosz[hrJ(n 1 + l)(n + 2)]cosh2 +2) 

-sin2 [h tJ(n  + l ) (n  + Z)] sinh’ + l)3(n + 2) 

1 n(n - 1) x exp [ - y W26JZt 

Substituting (45) and (46) into (44), we finally arrive at the result 

where the probablity amplitudes Q,, are given by (9). We see that (47) in the limit y -+ 00 
reduce to the well known expression [I51 for the atomic inversion in the two-photon JCM 
governed by the von Neumann equation. 

The solution (47) indicates that in the evolution the additional term in the Milburn 
equation, which destroys quantum coherences, leads to the appearance of decay factors 
exp[-(2A2t/y)(n + l)(n + 2)] in (47), which are responsible for the destruction of revivals 
of the atomic inversion. With the decrease of the parameter y ,  i.e. with a more rapid 
decoherence, we can observe rapid deterioration of revivals of atomic inversion. 

It is interesting to study further the influence of the intrinsic decoherence on other 
non-classical effects of light field in the ICM. 

The research was supported by the National Natural Science Foundation of China. 
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